Introduction

For gynecologists, minimally invasive surgery has become the standard of care for the treatment of endometrial cancer (1,2). Minimally invasive surgery results in fewer intra and postoperative complications, shorter hospital stay, reduced pain, faster recovery and better cosmetic results as compared to laparotomy (3). The subsequent introduction of robotic-assisted surgery has brought additional advantages to conventional laparoscopy, as short learning curve and comfortable ergonomics, improved surgical precision by using tremor-eliminating software, wristed instruments ameliorating dexterity, 3-dimensional vision (4).

Surgeons and patients have benefited from the introduction of robotics for the surgical treatment of endometrial cancer, with an increase in the number of patients undergoing minimally invasive approach and a significantly reduced risk of severe complications (5).

The development of a robotic single site platform has been shown to offer advantages compared with traditional robotic surgery for the treatment of selected patients, such as decreased parietal trauma, improved cosmesis and reduced costs (6-9). In the last three years different studies have evaluated the safety, feasibility and reproducibility of robotic single site approach for the treatment of endometrial cancer, showing the possibility to perform both pelvic lymphadenectomy and sentinel lymph node (SLN) mapping (9-17).

Operative technique

Following we describe our surgical technique to perform total hysterectomy and sentinel lymph node mapping for the treatment of low risk endometrial cancer using Da Vinci robotic single site device.

Patient had antibiotic prophylaxis and postoperative low molecular weight heparin. After general anesthesia, Foley catheter was placed in the bladder and Hole intrauterine manipulator was placed in place after coagulation of tubes, 4 milliliters of indocyanine green (2.5 mg/mL) was injected into the cervix at 3 and 9 o’clock.

A 2.5 cm intra umbilical incision was made to access into the peritoneal cavity. The single-site port was inserted into the abdominal cavity. The pneumoperitoneum was inflated at a pressure of 12 mmHg. Four specific trocars were introduced in the port: two 250 mm-long curved 5 mm trocars for robotic instruments, one 8.5 mm toca for the high-definition three-dimensional endoscope, and one 5 mm straight trocar for standard laparoscopic instrument. The Trendelenburg position was applied, till sufficient exposition of the pelvic surgical field. The Da Vinci® Si System was docked between the patient’s legs. 3D 8.5 mm firefly endoscope, monopolar ...
hook and bipolar forceps were used on. Total hysterectomy, bilateral salpingo-oophorectomy and SLN mapping, were performed following the technique previous described (15) and shown in the Video 1. Uterus with manipulator, adnexa, and SLNs in endobag were extracted through the vagina. The vaginal cuff was internally sutured using a snaked 5 mm robotic needle-holder with number 0 Vicryl. Hence the robot was undocked, the single-site port removed and the umbilical incision was sutured in planes with number 1 Vicryl on the fascia aponeurosis, and Monocryl 3–0 on the skin.

Comments

The combination of laparoscopy, robotics, single access and sentinel lymph node mapping makes possible to minimize surgery improving peri-operative outcomes.

Robotic single-site approach with SLN fluorescence detection is feasible and applicable for the treatment of low-risk endometrial cancer.

Further studies are needed to demonstrate the applicability of the SLN algorithm and to compare different minimally invasive surgical techniques of the management of endometrial cancer.

Acknowledgments

Funding: None.

Footnote

Provenance and Peer Review: This article was commissioned by the Guest Editor (Liliana Mereu) for the series “Robotic surgery for benign and malignant gynecological diseases” published in Gynecology and Pelvic Medicine. The article was sent for external peer review organized by the Guest Editor and the editorial office.

Conflicts of Interest: All authors have completed the ICMJE uniform disclosure form (available at http://dx.doi.org/10.21037/gpm-2019-rs-02). The series “Robotic surgery for benign and malignant gynecological diseases” was commissioned by the editorial office without any funding or sponsorship. LM served as the unpaid Guest Editor of the series, and serves as an unpaid editorial board member of Gynecology and Pelvic Medicine from Aug 2019 to Jul 2021. The authors have no other conflicts of interest to declare.

Ethical Statement: the authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the non-commercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license).

See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

doi: 10.21037/gpm-2019-rs-02

Cite this article as: Mereu L, Berlanda V, Tateo S. Robotic single site sentinel lymph node fluorescence detection. Gynecol Pelvic Med 2020.